Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(45): 9400-9412, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36285764

RESUMO

Enzyme function relies on the placement of chemistry defined by solvent and self-associative hydrogen bonding displayed by the protein backbone. Amyloids, long-range multi-peptide and -protein materials, can mimic enzyme functions while having a high proportion of stable self-associative backbone hydrogen bonds. Though catalytic amyloid structures have exhibited a degree of temperature and solvent stability, defining their full extremophilic properties and the molecular basis for such extreme activity has yet to be realized. Here we demonstrate that, like thermophilic enzymes, catalytic amyloid activity persists across high temperatures with an optimum activity at 81 °C where they are 30-fold more active than at room temperature. Unlike thermophilic enzymes, catalytic amyloids retain both activity and structure well above 100 °C as well as in the presence of co-solvents. Changes in backbone vibrational states are resolved in situ using non-linear 2D infrared spectroscopy (2DIR) to reveal that activity is sustained by reorganized backbone hydrogen bonds in extreme environments, evidenced by an emergent vibrational mode centered at 1612 cm-1. Restructuring also occurs in organic solvents, and facilitates complete retention of hydrolysis activity in co-solvents of lesser polarity. We support these findings with molecular modeling, where the displacement of water by co-solvents leads to shorter, less competitive, bonding lifetimes that further stabilize self-associative backbone interactions. Our work defines amyloid properties that counter classical proteins, where extreme environments induce mechanisms of restructuring to support enzyme-like functions necessary for synthetic applications.


Assuntos
Extremófilos , Amiloide/química , Ligação de Hidrogênio , Solventes/química , Modelos Moleculares
2.
Nat Commun ; 12(1): 214, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431901

RESUMO

Strong cavity coupling to molecular vibrations creates vibration-polaritons capable of modifying chemical reaction kinetics, product branching ratios, and charge transfer equilibria. However, the mechanisms impacting these molecular processes remain elusive. Furthermore, even basic elements determining the spectral properties of polaritons, such as selection rules, transition moments, and lifetimes are poorly understood. Here, we use two-dimensional infrared and filtered pump-probe spectroscopy to report clear spectroscopic signatures and relaxation dynamics of excited vibration-polaritons formed from the cavity-coupled NO band of nitroprusside. We apply an extended multi-level quantum Rabi model that predicts transition frequencies and strengths that agree well with our experiment. Notably, the polariton features decay ~3-4 times slower than the polariton dephasing time, indicating that they support incoherent population, a consequence of their partial matter character.

3.
RSC Adv ; 11(27): 16706-16710, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35479164

RESUMO

Through a combination of many analytical approaches, we show that a metal organic nanotube (UMON) displays selectivity for H2O over all types of heavy water (D2O, HDO, HTO). Water adsorption experiments combined with vibrational and radiochemical analyses reveal significant differences in uptake and suggest that surface adsorption processes may be a key driver in water uptake for this material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...